04
09

렉사 usb 다

렉사꺼 처음 사보는데 상당히 마감 같은 게 좋더라

 

 

 

꺼내보면 저렇게 생겼다

렉사는 예전에 mlc 낸드도 있었는데 지금은 tlc가 대부분 이것도 tlc

3.0이라 속도도 좀 빠른 거 같던데 측정해봤다

 

 

 

이 정도 나온다 매우 잘 나오는 편이더라 표기 스펙에 비해서도 매우 매우 잘 나오는 편

4k 속도도 잘 나오고 암튼 뽑기를 잘한 건가 싶다 기분이 매우 매우 좋다

발열도 별로 없는듯하다

 

 

다른 건 막 발열 많이 나면 쓰로틀링 걸려서 속도 내려가고 그러는데 이건 그런 건 없는 듯

근데 낸드 어디 건지 프로그램 깔아봐도 안 나오더라

아무튼 매우 만족 매우 만족

 

 

 

낸드 플래시 메모리

 

구분 SLC(Single Level Cell) MLC(Multi Level Cell) TLC(Triple Level Cell) QLC(Quad Level Cell) PLC(Penta Level Cells) OLC(Octa Level Cell)
용도 높은 저장 속도와 내구성 위주 적절한 속도, 내구성, 약간 낮은 용량 위주 용량과 속도, 내구성의 균형 대용량 위주 보급용 판촉용 또는 CD, 카세트테이프 등 읽기 전용 매체 대체용
읽기 NOR보다 느림 SLC보다 느림 MLC보다 느림 TLC보다 느림 QLC보다 느림 PLC보다 느림
쓰기 단일 비트 저장으로 빠름 2비트 동시 기록으로 약간 빠름 3비트 동시 기록으로 느림 4비트 동시 기록으로 더 느림 5비트 동시 기록으로 매우 느림 8비트 동시 기록으로 미친 듯이 느림
수명 최대 약 10만 회 최대 약 3 ~ 1만 회 최대 약 1만 ~ 1천 회 최대 약 1000 ~ 100회 최대 약 100회 최대 약 10회 미만
가격(용량 대비) 초고가 고가 보통 저가 초저가 최저가

 

현재 기술 발달로 메모리 종류별 절대적인 읽기/쓰기 속도 차이가 줄어들었다. 단적으로 SLC인 메모리보다 MLC인지 TLC인지 헷갈리는 Sandisk Z80이 더 빠른 쓰기와 4K 속도를 자랑한다.

 

 

MLC보다 빠른 읽기/쓰기 속도를 가진 TLC 메모리가 나오고 있고, TLC도 NVMe SSD 6~8 GB/s, USB 메모리 스틱이나 CF 카드도 100 MB/s가 넘어가는 게 보통이 되어 갈 정도로 평준화되고 있다. 다만 쓰기 속도는 일시적으로 SLC로 동작시키는 캐싱 기술을 통한 것이라 그 한도를 넘어서는 대용량 데이터를 한 번에 쓰면(또는 내부 상태를 정리할 틈을 안 주고 연속으로 써대면) 본래의 허접한 성능이 드러난다. 유명 브랜드의 제품 같은 경우는 인터넷을 찾아보면 관련 스펙을 정확히 명시해 놓기도 하지만, 특히 USB 메모리 스틱이나 CF 카드는 최대 130 MB/s라고 써놓고 상세 내역을 알려주지 않는 경우가 더 많다. 10 MB/s 이하의 쓰기 속도가 나오기도 한다. 조심해서 고르자.

 

참고로 USB 3.0 이후 전반적인 성능이 오르다 보니 USB 메모리 스틱이나 CF 카드가 발열 때문에 성능이 떨어지는 경우도 많다. 이걸 넘어서는 성능이 필요할 경우 외장형 SSD를 쓰는 게 현명하다.

SLC는 셀당 1비트를 담는 것이고, MLC는 한 셀에 2비트를 담는 것이다. 당연히 용량 대비 가격은 MLC가 싸지만, 쓰기 속도가 매우 느리다. 다행이라면 읽는 속도는 별 차이 없다는 것이다. 싼 가격 때문에 대부분의 소비자용 제품이 MLC다. SLC 제품은 보통 전문가용이라고 광고를 하고 있는데 가격이 바로 몇 배로 올라간다. MLC의 또 다른 단점은 기록 허용 횟수가 SLC보다 작다는 것이다.

 

간단히 어떤 물컵(셀)에 있는 물의 비율을 0 또는 1의 이진수로 변환한다고 가정해 보자. 0을 쓰려면 물을 비우면 되고, 1을 쓰려면 물을 가득 채우면 된다. 물론 플래시 메모리도 소모품이므로 시간이 지나며 점점 노화되어 항상 물을 0%로 비우거나 100%로 채울 수는 없다. 이걸 소프트웨어적으로 보완하여 50% 미만이면 0이고, 50% 초과면 1로 읽도록 알고리즘을 설정한다. 실제로는 에러를 줄이기 위해 중간에 완충 구간이 있다. 이 구간으로 차 있으면 그 셀은 고장 난 것으로 판단하여 버린다.

 

SLC는 컵 하나에 0 또는 1 하나만 저장한다. 그러면 셀이 어느 정도 노화되어 완전히 비워도 47%, 다 채워도 53%밖에 저장이 안 되어도 값을 읽고 쓰는 데 문제는 없다. 물을 대충 채워도 읽고 쓰기가 가능하므로 읽기/쓰기가 빠르다. 다시 말해서, 플래시 메모리의 최고 존엄.
MLC는 컵 하나의 상태를 4개로 구분하여 0%, 33%, 67%, 100% 네 가지 구간당 00, 01, 10, 11의 네 가지 상태를 가질 수 있도록 구현한다. 컵 하나당 4개의 상태를 가지므로 컵당 저장할 수 있는 용량은 SLC의 두 배다. 그러나 SLC에 비해 세심한 조작이 필요하므로 읽기/쓰기가 느리고, 셀의 허용 범위 값이 좁아져서 SLC에 비해 조금만 오차가 나도 오류가 발생할 가능성이 높아진다.

TLC는 컵 하나의 상태를 8(23) 개로 구분한다. 컵 하나당 8가지 상태를 가지므로...(이하 생략.)
QLC는 컵 하나의 상태를 16(24) 개로 구분한다. 컵 하나당 16가지 상태를 가지므로...(역시 이하 생략.)
PLC는 컵 하나의 상태를 32(25) 개로 구분한다. 컵 하나당 32가지 상태를 가지므로...(역시 이하 생략.)
OLC는... 컵 하나의 상태를 256(28) 개로 구분한다. 컵 하나당 256가지 상태를 가진다.
이와 별개로, 3D NAND는 컵을 수직으로 더 크게 만들어서 더 많은 물을 채울 수 있도록 한 것이다. 세심한 조작이 필요하다는 것은 동일하지만 물을 채워야 하는 허용 범위는 평면 NAND보다 더 넓어졌다.

여기서 비유한 컵이 셀이고, 물의 양이 전하량이라고 보면 된다.

TLC라고 새로운 마케팅 용어가 등장하면서 MLC의 뜻이 바뀌고 있다. MLC의 원래 의미는 2비트 이상의 레벨을 가진 셀이라는 뜻인데, 3비트짜리는 TLC라고 부르기 시작하면서 MLC는 2비트 전용으로 잘못 굳어지는 추세. 올바른 표기는 DLC(Dual Level Cell)이다. 하지만 대부분의 제조사가 2비트를 MLC로 부르기 때문에 그냥 MLC라고 부르자. DLC라고 하면 못 알아듣거나 '다운로드 콘텐츠(DownLoadable Contents)'로 알아듣는 경우도 있다.(...) 그래서 엄밀한 의미의 정확한 용어를 쓸 때는 2bit MLC(DLC), 3bit MLC(TLC) 식으로 구별하는 편이다.

2012년부터는 QLC(Quad Level Cell)라는 괴악한 물건도 등장한 듯하다. 말로만 듣던 QLC SLC, MLC, TLC로 이어지는 쓰기 횟수의 감소를 감안하면 QLC의 괴악함을 상상할 수 있다.

 

플래시 메모리는 비트 수에 따라 수명이 많이 차이가 난다. 평면 낸드 기준으로 SLC는 50,000~100,000회의 쓰기가 가능하고, MLC는 3,000~10,000회, TLC는 500~1,000회의 쓰기가 가능하다. 이 수명은 공정에 따라서도 차이가 나는데, 제작 공정이 작을수록 수명은 줄어든다. MLC는 50 nm 공정일 경우는 쓰기 10000회, 32 nm 공정일 경우 쓰기 5000회, 25 nm 공정일 경우 쓰기 3000회로 줄어든다. 다만 3D 낸드에서는 내구성이 향상되어 셀당 쓰기 횟수가 증가하였다.

사실 단위 셀당 비트 수를 늘릴수록 대용량을 쉽게 구현할 수 있어 가격 경쟁력이 올라가지만, 문제는 용량만 증가하고 성능이 크게 저하된다는 사실이다. 오류가 많아지고 데이터 신뢰도와 재기록 횟수가 눈에 띄게 떨어지는 것이다. 그것도 문제지만 갈수록 용량 증가폭이 줄어드는 데다가, 그냥 읽기만 할 때도 에러가 늘어서 ECC 등 오버헤드가 늘기 때문에 기술력이 부족하면 오히려 용량을 까먹는 수가 있다. 비트수는 산술급수적으로 증가하나 그에 비해 기록할 때 사용하는 전압은 기하급수적으로 증가하기 때문이다.

 

그러나 무조건 "TLC 이상은 절대 못 쓸 제품이며 오직 SLC와 MLC만이 플래시 메모리의 희망이다"라고 생각하는 것은 위험할 수 있다. 이에 대해 2016년 2월 구글은 자사 데이터센터에서 6년 간 축적한 데이터를 가지고 SSD에 관한 보고서를 냈는데, 결과는 다음과 같다.

 

시장에서 널리 사용되는 UBER(Uncorrectable Bit Error Rate)은 SSD의 신뢰성을 평가하기에 적합하지 않다. RBER(Raw Bit Error Rate)가 더 중요하다.
반드시 하이엔드 제품인 SLC가 MLC보다 내구성이 좋은 건 아니다. SSD의 불량률이 HDD보다 낮았다. 하지만 UBER이 높았다. SSD의 사용량보다 사용 기간이 신뢰성에 더 영향을 많이 미쳤다. 새 NAND에도 배드 블록이 많았다. NAND의 초기 품질이 낮다. SSD의 사용 시점부터 4년 이내에 30~80% 확률로 배드 블록이 발생했다. 2~7% 확률로 1개 이상의 불량 칩이 발생했다.

 

이러한 결과를 통해 결론을 내리자면 현시점에서 SSD는 서버 시장에서 주요 저장 매체로 사용할 수 있을 정도로 안정적이다. 가격 하락만 지속된다면 서버 시장에서 HDD를 빠르게 대체해 나갈 것이다. 하지만 아직 HDD를 완전히 대체할 수 있는 수준까지 신뢰성이 올라오지는 못했다. HDD 백업이 필요하다.

 

MLC보다 TLC가 주로 사용될 것이다. 이론적으로는 SLC가 MLC보다 내구성이 높아야 하지만, 구글의 테스트 결과 상으로는 SLC와 MLC의 차이가 거의 없었다. 데이터 저장 방식에 따른 내구성 수준이 실제 데이터센터 운영에 영향을 거의 끼치지 않는다면, MLC와 TLC 사이의 차이도 거의 없을 것이다. 현재 이미 데이터센터에서 SLC는 거의 사용되고 있지 않다.

 

대부분 MLC와 TLC가 사용 중인데, 향후 TLC의 비중 증가가 더 가속화될 것으로 전망된다.
저가형 범용 NAND 칩과 SSD의 판매가 크게 늘어날 것이다. 구글의 테스트 결과로는 기업용 고가의 SSD와 일반 소비자용 SSD의 내구성이 큰 차이가 없었다. 기업용 SSD는 오버 프로비저닝의 수준이 크게 높다. 이는 위에서도 언급한 것처럼 웨어 레벨링과 가비지 컬렉션이 원활히 작동하게 하기 위함이다. 하지만 실제로는 두 제품 간 큰 차이가 없었다. SSD의 사용량보다 사용 시간이 더 내구성에 미치는 영향이 컸다는 점도 저가형 SSD 판매를 가속화시킬 것으로 보인다. SLC의 쓰기 한계 횟수는 10만 회, MLC는 3만 회이다. 하지만 구글에서 실제로 사용한 NAND의 쓰기 한계 횟수는 SLC, MLC가 큰 차이를 보이지 않았다.

 

HDD는 향후에도 여전히 서버 시장에서 주요 스토리지로 사용될 것이다. 단, 백업용 위주로 사용될 것이다. SSD의 고장률은 HDD보다 낮았지만, UBER 은 높았다. 이는 SSD가 고장 났을 때, 데이터가 사라질 확률이 HDD보다 높다는 뜻이다. 서버 시장에서 SSD가 HDD를 대체하고, HDD가 사라지는 것이 아니라, HDD는 SSD를 백업하는 용도로 많이 사용될 것이다.

즉, 이론적으로는 셀당 저장 방식에 따른 성능 및 안정성 차이가 나는 것이 맞지만, 시간이 지나며 공정이 개선되고 새로운 설계를 적용하는 등의 다른 개선 작업도 같이 진행되기 때문에 셀당 저장 방식을 성능 및 안정성의 절대지표로 보아서는 안 된다는 것. 같은 4 GHz CPU라도 펜티엄 4와 i7-8700K의 성능이 같을 수는 없는 것처럼, TLC가 많이 생산되고 많이 팔리는 것은 그만큼의 기술 발전이 병행되었으니 가능한 일이다.

2018년, 삼성전자는 SSD의 주력 라인업에 QLC 칩을 사용한다고 밝혔다. 실제로 2018년 8월 초부터 삼성전자에서 QLC SSD를 양산하며, 이후 출시될 SSD의 볼륨형 모델에는 QLC가 장착된다.

2020년부터는 PLC로 넘어가기 시작했다.

최근 OLC도 등장하기 시작했다.

COMMENT
 

인기 글


최근 글